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We analyze nonequilibrium states in a tunnel superconductor-normal-metal �N/S/N� structure in the presence
of a tunnel current I. We use an approximation of an effective temperature T and calculate the current-voltage
I-V characteristics. It is shown that the I-V dependence may have an S-shaped form. We determine nonuniform
current I�x� and temperature T�x� distributions that arise as a result of instability of the uniform state with
negative differential conductance �dI /dV�0�. We discuss an analogy with equilibrium superconductors with
an exchange field in which nonuniform states predicted by Larkin/Ovchinnikov and Fulde/Ferrell are possible.
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I. INTRODUCTION

Study of superconductor/normal metal �S/N� or
superconductor/superconductor heterostructures has been a
popular topic during last decades.1–4 Both the equilibrium
and nonequilibrium properties of such systems were under
intensive investigation. Nonequilibrium phenomena are of
special interest because they are essentially different from
the equilibrium ones but several interesting effects have been
observed even in the cases when a deviation from the equi-
librium is small. As an example, one can mention a non-
monotonic behavior of the resistance of S/N structures as a
function of temperature T or applied voltage V.5–9

If the applied voltage is not too small, the superconductor
S �for example, in a N/S/N system� goes out of the equilib-
rium and new phenomena come into play. Study of nonequi-
librium effects in superconducting heterostructures as well as
in homogeneous superconductors in the presence of optical
or microwaves radiations has been carried out during a long
time �see reviews10–12 and references therein�. For example,
Eliashberg13 suggested to stimulate superconductivity by a
microwave radiation that leads to an essential deviation of
the distribution function f from the equilibrium one. As the
energy gap � in S is related to the function f via the self-
consistency equation, the energy gap and the critical tem-
perature may increase in the presence of a microwave radia-
tion, which results in an increase in the critical current.14

Another interesting effect caused by a nonequilibrium distri-
bution function is the sign reversal of the Josephson critical
current jc in a multiterminal SNS junction.15 It turns out that,
provided the distribution function in the normal-metal N
controlled by additional N� electrodes differs significantly
from the equilibrium one, the critical current jc becomes
negative �� state�.16–18

In recent years, the interest in studies of nonequilibrium
effects in S/N or S /S� heterostructures has revived. This is
due to the progress in nanotechnology, the possible applica-
tions of such structures in low-temperature devices19 and to
the progress in theoretical research.1–4,20

Perhaps, the simplest system in which one can study non-
equilibrium effects is a N/S/N structure with a bias current
Ib. Such a structure was studied theoretically in recent

papers.21,22 In Ref. 21 it was assumed that the resistance of
the S/N interfaces is negligible. The calculated I-V charac-
teristics �CVC� were shown to be of the so-called N-shape
type, that is, three values of voltages correspond to one value
of the bias current Ib. Earlier this type of the I-V character-
istics was studied in other superconducting systems.12,23–25

The opposite case of a large S/N interface resistance was
considered in Ref. 22. In this case the I-V curve is of the
S-type, i.e., three values of the current correspond to one
value of the voltage V between the N leads. Such kind of the
CVC was known from previous studies of the superconduct-
ing structures. For example, it can be realized in S / I /S
junctions10,11,26,27 and in granular superconductors.28,29 The
authors of Ref. 22 investigated the stability of this system
and came to the conclusion that the system is stable. How-
ever, this conclusion is valid only in the case of small lateral
dimensions of the structure. From a general theory of the
system with negative differential conductance �Gd=dI /dV
�0�, it is known that the states with negative Gd are unstable
and of the S-shape I-V curve a stratification of the current
density occurs as a result of the instability.30,31 Inhomoge-
neous states in different superconducting systems were stud-
ied in approximate models with account for electron-electron
or electron-phonon inelastic scattering.10,11

In the present paper, we analyze the N/S/N structure of
the type considered in Ref. 22 assuming however that lateral
dimensions are large. The latter assumption turns out to be
very important. We find in this limit that a new inhomoge-
neous state is possible, which contrasts the situation in small
sized systems. Physics of this inhomogeneous state is very
similar to that of the inhomogeneous state in equilibrium
superconductors with an exchange field �the Larkin-
Ovchinnikov-Fulde-Ferrell states32,33�. It is worth emphasiz-
ing though that, in the system considered here, there are no
magnetic interactions and their role is played by a finite volt-
age V �see below�. Under certain assumptions we calculate
the I-V curve and study possible inhomogeneous states. Most
of the results are obtained in an analytical form. In particular,
we find the spatial distribution of the current density j�x� and
energy gap ��x� and draw an analogy with those in the
LOFF states.
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II. MODEL. BASIC EQUATIONS

In order to calculate physical quantities we use a kinetic
equation for the nonequilibrium distribution functions f�.
The procedure of the derivation is quite standard �see,
e.g., Ref. 34� and is based on using quasiclassical Keldysh
matrix Green functions ĝ. They are expressed in terms of the
two distribution functions f� as ĝ= ĝR��̂3f−+ �̂0f+�− ��̂3f−
+ �̂0f+�ĝA, where �̂3 is the �̂z Pauli matrix and �̂0 is the unit
matrix. The functions f+ and f− correspond to the functions
fL and fT introduced by Schmid and Schön.35

The considered N/S/N system is shown in Fig. 1�a�. We
assume that the tunneling probability through the interface
is small and that the retarded �advanced� Green’s functions
ĝR�A� have the same form as in a bulk superconductor:
ĝR�A�=gR�A��̂3+ fR�A�i�̂2 with fR�A�=� /���� i��2−�2 and
gR�A�=�1− �fR�A��2. The only difference is that, in contrast to
the bulk case, the damping �, caused by proximity effect,
enters the formula for the function fR�A�. In this limit the
damping � is equal to ���0, where �0=D / �RSN	d�, D
=v2� /3 is the diffusion coefficient, RSN is the SN interface
resistance per unit area, 	 and d are the conductivity �in the
normal state� and the thickness of the superconductor. The
thickness of the S layer is assumed to be small �d
�S

��D /�� so that all quantities do not depend on the z coor-
dinate. The opposite case was considered in Refs. 21 and 36.
The thickness of the N leads is supposed to be large �dN
��S� so that the N metals are in the equilibrium state.

The function f−�� ,V� appears due to a branch imbalance
and, being dependent on the electric potential V, determines
the current I. In case of a fully symmetric N/S/N system f−
=0. The function f+�� ,V� determines the energy gap �. Since
the function f+�� ,V� depends on the applied voltage V, the
gap � is also a function of V. The dependence ��V� is given
by the self-consistency equation

1 =  Re �
0

�D

d�
f+��,V�
��̃2 − �2

, �1�

where �̃= ��+ i�� and  and �D are the coupling constant and
Debye energy, respectively. Equation �1� is a generalization
of the conventional BCS equation to the nonequilibrium
case.

The functions f� can be found from the kinetic equation
that can be written in S in the form �see, for example, Ref.
37�

��NS���f��
�t

−
��D���� � f��

�x2 = �
�=l,r

��A����� + Sin	f�
 ,

�2�

where

NS��� = Re	gR���
 = Re
�̃

��̃2 − �2
�3�

is the normalized density of states �DOS�, �l,r= �D /Rl,r	d�
with Rl,r being the resistance of the left �right� S/N interfaces
and D� is an energy-dependent diffusion coefficient,

D���� =
D

2 �1 +
�̃�̃� � �2

��̃2 − �2��̃�2 − �2� �4�

with �̃�=�− i�.
The functions Al,r���� in Eq. �2� are defined as

Al,r���� = NS����F���,Vl,r� − f����� . �5�

The distribution functions in the normal metals are assumed
to have the equilibrium forms shifted by the applied voltages
V. In a fully symmetric system, the voltages in the right �Vr�
and left �Vl� N metals are equal to Vr=−VlV. In this situ-
ation, the functions F� entering Eq. �5� take the simple form

F� = �tanh�� + eV��0 � tanh�� − eV��0�/2, �6�

where 1 /2�0=T0 is the reservoir temperature. In the limit of
the weak coupling between N and S layers the density of
states in the N metals is supposed to be unperturbed by the
proximity effect: NN���=1.

The first terms on the right-hand side of the kinetic Eq. �2�
describe the tunneling of quasiparticles from �to� the normal
electrodes, whereas the last one is an inelastic collision term.
It consists of the electron-electron and electron-phonon
collision terms �Sin=Se−e+Se−ph� and is on the order of
f���� /�e−e and f���� /�e−ph, where �e−e and �e−ph are the
electron-electron and electron-phonon inelastic-scattering
times. Equation �2� contains the DOS, NS�� ,��, depending
on the energy gap ��V�. Therefore Eqs. �1�–�6� are coupled
and the problem of finding the distribution function f+ is not
easy.

III. MODERATE INTERFACE RESISTANCE.
HOMOGENEOUS CASE

We consider first a homogeneous stationary state assum-
ing that all the quantities do not depend on the coordinate x.

FIG. 1. �Color online� �a� The system under consideration. �b�
The proposed system in which an inhomogeneous distribution of
the energy gap can be probed with a point-contact spectroscopy.
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However, the problem of solving Eqs. �1�–�6� is too compli-
cated even under this assumption and therefore we consider
only two limiting cases.

First, we analyze the limit of a very weak electron-
electron and electron-phonon interactions: ���l,r��e−e

−1 ,
�e−ph

−1 , when the collision terms in Eq. �2� can be neglected. In
other words, the S/N interface resistance RSN is not too high:
RSN	d
 	D�e−e ,D�e−ph
. This approximation has been used
in many papers �see, for instance, Refs. 20 and 22�. For a
symmetric N/S/N system we use Eq. �6� and obtain from Eq.
�2� the following solutions:

f+ = F+, f− = 0. �7�

Substituting the function f+ into Eq. �1� and shifting the en-
ergy in the integral by eV in the first term and by −eV in the
second one, we reduce Eq. �1� to the following form:

1 =


2
Re �

−�D

�D tanh���0�
��� − eV + i��2 − �2

d� . �8�

Remarkably, the form of Eq. �8� is the same as the one for a
superconductor in the presence of an exchange field. In other
words, the problem of the nonequilibrium superconductor in
the N/S/N system is to a great extent equivalent to the prob-
lem of the equilibrium superconductor with the distribution
function f+=tanh���0� in the presence of an “exchange” field
eV.

The latter problem has been attracting a lot of attention
since the pioneering works by Larkin and Ovchinnikov33 and
Fulde and Ferrell.32 For the model with the exchange field,
these authors have predicted a new state called now LOFF
state. They considered a clean superconductor with the ex-
change field h �or a strong magnetic field� acting on spins of
electrons. They demonstrated that at zero temperature the
energy gap � remained unchanged unless the exchange en-
ergy h exceeded the value �0, where �0 is the energy gap at
zero temperature in the absence of h.

However, in addition to this solution of the self-
consistency equation, there is another, unstable, solution for
�: ��h�=�0

�h2 /hc
2−1 with hc

2=�0
2 /2 and hc�h��0.

Therefore, in the interval hc�h��0 there are three possible
solutions for �: 0, ��h�, and �0 �the trivial solution �=0
always exists�. The situation resembles the behavior of a
nonideal gas described by the van der Waals equation of state
and thus, one can expect a stratification of the electron sys-
tem. Indeed, as it was shown in Refs. 32 and 33, an inhomo-
geneous state with the energy gap ��r� varying in space
turns out to be more favorable than the homogeneous one.

Using the equivalence between the N/S/N system at a
finite voltage V and the equilibrium superconductor in the
presence of the exchange field one may expect an inhomo-
geneous LOFF-like state in the system considered here. A
multivalued �in a certain region of parameters� dependence
of the energy gap � on the applied voltage V and damping �
has recently been found for an N/S/N system in Ref. 22. The
function ��V� had a form similar to that determined by Eq.
�8�. It was established that at some values of the parameters
the CVC had the so-called S-shaped form. This type of the

CVC is well known in bulk superconductors and has already
been obtained both theoretically �see the review10,11� and
experimentally26,27 several decades ago.

Although, one could expect an inhomogeneous state in
the N/S/N systems, the authors of Ref. 22 came to the con-
clusion that the homogeneous state had to remain stable. This
statement is correct for the superconductor island of a small
size considered in Ref. 22 but cannot remain valid for large
superconducting films sandwiched between normal metals.
Note also that the authors of Ref. 22 studied the stability of
the system in a short-time interval: t�� /� �a similar dy-
namic behavior of the order parameter in a collisionless su-
perconducting system was studied earlier in Ref. 38�. On the
other hand the instability develops on much longer charac-
teristic times t�� /�0.

In this case, the states corresponding to the part of the
CVC with negative differential resistance are unstable and
the stratification of the current density occurs in the system
�see the review31�. This structure resembles the LOFF coor-
dinate dependence of the order parameter and of other physi-
cal quantities. However, in contrast to the LOFF state in the
equilibrium superconductors with the exchange field, the co-
ordinate dependence cannot be found minimizing the free
energy because we consider a system out of the equilibrium.

IV. HIGH INTERFACE RESISTANCE.
NONHOMOGENEOUS CASE

Although the similarity between the problem involved
and the problem of LOFF is most clearly seen in the limit,
�l,r��e−e

−1 , �e−ph
−1 , one has to solve in this limit complicated

integrodifferential Eqs. �1� and �2� and this can be done only
numerically. The problem can be solved analytically in an-
other limit,

�e−ph
−1 
 �l,r 
 �e−e

−1 . �9�

In this limit the electron-phonon interaction is very weak and
the electron-phonon collision term in Eq. �2� can be ne-
glected. The largest term in Eq. �2� is the electron-electron
collision term Se−e	f�
.

Note that the electron-electron �e−e
−1 and electron-phonon

�e−ph
−1 scattering rates depend on energy � �Ref. 39� so that

Eq. �9� can be satisfied not at all energies. If the mean-free
path is not too short �s /T� l but l�v /3� because we con-
sider the dirty limit�, these scattering rates are: �e−e

−1

��e−e�Te��2 /Te
2 and �e−ph

−1 ��e−ph�Te��3 /Te
3 with �e−e

=�e−eTe
2 / �8�EF� and �e−ph=�e−phTe

3 / �2�s2pF
2�, where e−e

and e−ph are electron-electron �electron-phonon� interaction
constants, EF is the Fermi energy, and s is the sound velocity
�see, for example, Ref. 34�. The characteristic energy �ch in
our case is on the order �ch�Te�Tc; thus, for the Al S films
the inelastic-scattering rates are: �e−e

−1 �108 s−1 and �e−ph
−1

�106 s−1.40 At temperatures lower than Tc, the interval be-
tween �e−e

−1 and �e−ph
−1 becomes larger because �e−ph

−1 has a
stronger dependence on � than �e−e

−1 . However, one has to take
into account the dependence of �e−e

−1 and �e−ph
−1 on ��T�.

Therefore, if the frequency �0 /�=D / �RSN	d�, which is de-
termined by the S/N interface resistance RSN, is chosen in the
interval 106–108 s−1, the approximation of an effective tem-
perature can be applied to the case of these films.
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It is worth noting that the violation of the condition �9�
leads only to breakdown of the effective temperature ap-
proximation but not to disappearance of the effects under
consideration. For these effects it is important only to have
the S-shape CVC, which is realized, for example, also in the
case of the frequency �0 /� large in comparison with �e−e

−1 and
�e−ph

−1 �see the preceding section and Ref. 22�. However the
approximation of the effective temperature allows one to
solve the problem in an analytical form. In the limit of high
impurity concentration �l�s /T�, the inelastic electron-
phonon-scattering rate �e−ph

−1 depends on energy even
stronger,29,41–43 that is, the window between �e−e

−1 and �e−ph
−1

becomes larger and the situation is even more favorable for
applicability of our approach. If the frequency �0 /� is less
than �e−ph

−1 , then the heat absorbed by quasiparticles in the
superconductor is released mainly to the lattice, but not to
the normal electrodes, and our approach is not applicable.
However, one can show that in this case the CVC of the
system also has the S-shape form and all the effects consid-
ered here remain qualitatively unchanged, although the ana-
lytical approach is not possible in this case.

In the limit determined by Eq. �9� the electron-phonon
interaction is very weak and the electron-phonon collision
term in Eq. �2� can be neglected. The largest term in Eq. �2�
is the electron-electron collision term Se−e	f�
. Due to a high
rate of the electron-electron collisions one can assume that
the distribution function f+ has an equilibrium form, f+���
=tanh����, with an effective temperature T�2��−1 depend-
ing on the coordinate x. Perhaps for the first time, the ap-
proximation of the effective temperature has been introduced
in the study of nonequilibrium superconductors by Parker44

�see also Refs. 29, 31, and 45�. In order to find this tempera-
ture, we multiply Eq. �2� by �, drop the first term on the
left-hand side and integrate the equation over all energies.
This procedure leads to an equation describing the energy
conservation. The contribution of the collision term Se−e	f+

equals zero because this term conserves the total energy and
we obtain the equation for T

−
��M�T̃� � T̃/�x�

�x
= �

�=l,r
��

2�J�V�,T̃� − S�T̃�� , �10�

where �l,r
2 = �D /Rl,r	d� and T̃T /T0 is the normalized tem-

perature, and

M�T̃� = �T̃/D��
0

�

dyy2D+�y,���cosh−2�y� .

where the function D+�y ,��� is defined in Eq. �4�.
The functions J�V� ,T� and S�T� are the heat source

�Joule heat� and drain due to the tunneling of electrons into
the N electrodes. They can be written as

J�Va,T̃� = �
0

�

dyyNS�y�	tanh�y� − �tanh�y+� + tanh�y−��/2
 ,

�11�

S�T̃� = �
0

�

dyyNS�y��tanh�y� − tanh�y/T̃�� , �12�

where y=��0, y�=y�eV�0, and T̃=T /T0.
In order to solve Eq. �10� we consider for simplicity the

symmetric case when Vr=−VlV. In the homogeneous case
the dependence of the effective temperature on the applied

voltage can be found from the balance equation: J�V , T̃�
=S�T̃�. Explicit expressions can be derived analytically in
the limits of low and high temperatures.

In the limit of high temperatures, V�0
1, we come to the
following formula:

T̃ − 1  �T − T0�/T0 � �V�0�2 �13�

whereas at low temperatures, V�0�1, �eV−���T0 we ob-
tain

T̃ − 1 � eV/�� − eV� . �14�

Note that at low temperatures T0 both the terms J and S are,
as they should be, exponentially small but the effective tem-
perature T is not. Making these estimations, we assume that
�→0. Thus, it is not obvious that the effective temperature T
and energy gap � will be multivalued functions of V as it
takes place in another limit considered in the previous sec-
tion. Numerical calculations of the integrals �Eqs. �11� and
�12�� show that the situation qualitatively remains un-
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FIG. 2. �Color online� �a� Normalized effective temperature and
�b� energy gap as functions of the applied voltage V for � /�0

=0.01 and different temperatures T0=1 / �2�0� �shown in the inset�.
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changed, i.e., the quantities T and � have three values in a
certain interval of voltages V. The dependencies T�V� and
��V� are shown in Figs. 2�a� and 2�b�. One can see that in a
narrow interval of the voltage, the effective temperature can
have three values �T1 ,T2 ,T3� and therefore the energy gap �
is also a multivalued function of V, which is analogous to the
behavior in superconductors with an exchange field h.

The current through the system is given by the formula

I =
1

eRb
�

0

�

d�NS��,��T��F−��,V� , �15�

where F−= �tanh��+eV��0−tanh��−eV��0� /2. The CVC ob-
tained from Eq. �15� is shown in Fig. 3 for different tempera-
tures T0 �Fig. 3�a�� and damping � �Fig. 3�b��.

It is clearly seen from Fig. 3 that the CVC has an “S-
shaped” form. This type of the CVC may also occur in
semiconductors31 as a result of the so-called overheating
mechanism and in bulk superconductors in the presence of a
dissipative current.10,11,26,29 This phenomenon is possible for
a special dependence of the heat source J�V ,T� and heat
absorption term S�T� on the effective temperature T and ap-
plied voltage V. The “N-shaped” CVC may also arise as a
result of the overheating mechanism.12,21,23–25

One can show in the same way as it was done in Ref. 31
that the states corresponding to the part of the CVC with a
negative differential resistance are unstable and, in the case
of a fixed total current,46 the system is stratified into layers
with different effective temperatures and current densities.
The form of the current filaments can be found from Eq.
�10�.

We introduce a new effective “temperature” �

=�1
T̃dT̃1M�T̃1�T̃1 and a function of this temperature W���

=�0
�	J�V , T̃��1��−S�T̃��1��
d�1. Integrating Eq. �10� over

the temperature T̃ and then over � we arrive at the equation

�1/2�l0
2���/�x�2 = W0 − W��,V� , �16�

where l0
−1=�r=�l.

Equation �16� is already quite simple and its solution �

describes the dependence of the temperature T̃ on the coor-
dinate x along the interface. One can rather easily see that
this dependence can be nontrivial. This originates from the
fact that in a narrow interval of V, where the CVC is a
multivalued function, the function W�� ,V� has three extrema
at �k�Tk�, where k=1,2 ,3 �see Fig. 4�a��. As a consequence,
the solutions of Eq. �16�, l0��� /�x�=�2�W0−W�� ,V�, have
different forms: solitons �instantons�, oscillatory temperature
distributions, or domain walls.

In Fig. 4�b� we show qualitatively phase trajectories illus-
trating this conclusion. At a certain voltage V0 the function
W��� has the same values at the maxima: W��1�=W��3�.
This means that the voltage V0 satisfies the condition:

��1

�3	J�V0 , T̃����−S�T̃����
d�=0. The trajectory connecting
these maxima �separatrix� corresponds to a solution like a
domain wall: l0��� /�x�=�2�W��1 ,V0�−W�� ,V0�. The spa-
tial distribution of the effective temperature T related to this
trajectory is a decay of T from the value T3 to T1 over a
length on the order of l0. The trajectories close to the sepa-
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FIG. 3. �Color online� �a� The CVC of the system in the homo-
geneous state for � /�0=0.01 and different temperatures. The part
of the CVC corresponding to an inhomogeneous state �a broad
high-temperature domain� is shown by the dashed vertical line. �b�
The CVC in the homogeneous state for different damping �. The
temperature T0 is chosen so that �0�0=15.
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FIG. 4. �Color online� �a� The potential W��� for different
V :V=V0 �solid line�; V�V0 �dashed line�, and V�V0 �dashed-
dotted line�. �b� Phase trajectories �T ,dT /dx�. Solid line shows a
separatrix �a domain wall in T�x� distribution�; dashed and dotted
lines show domainlike structure of T�x� distribution; �c� spatial de-
pendence of the effective temperature corresponding to a domain-
like structure �arbitrary units�.
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ratrix describe the domain structure �see Fig. 4�c��. This
structure is analogous to the one in a superconductor with an
exchange field in the LOFF state.

At the same time, the inhomogeneous state in the SN
systems out of the equilibrium differs from the LOFF state.
In the latter case the solution of the self-consistency equation
should correspond to the minimum of the free energy
whereas in our case the choice of the solution is dictated by
the bias current Ib and by the stability against small pertur-
bations. One can show that the most stable solution has the
minimal number of zeros of the function �T�x� /�x.31,47

This fact suggests the following scenario: �a� with in-
creasing the bias current Ib the dependence I�V� follows the
CVC for the homogeneous case. �b� At Ib� Im the voltage V
jumps to a lower value close to V0 and remains almost con-
stant with increasing Ib �see Fig. 3�a� and Ref. 31�. �c� When
the current Ib exceeds the value I3, the voltage V increases
along the CVC for the homogeneous case. If Ib decreases
from I3, the voltage decreases and a jump to a higher voltage
close to V0 occurs at Ib� IM �a hysteretic behavior�.

It would be interesting to study experimentally the inho-
mogeneous distribution of the effective temperature T�x�,
current, and the gap ��x�. This could be done, for example,
by applying the point-contact spectroscopy to N/S systems
�see a possible setup in Fig. 1�b��. The distribution function
f+ in these systems has the same form as in N/S/N systems.
Therefore, by measuring the spatial distribution ��x�, one
can get information about the inhomogeneous states in the
N/S systems.

It is interesting to note that the ideas that the symmetry
breaking of the LOFF type may occur not only in the super-
conductors but also in the quantum chromodynamics, astro-
physics, and in cold gases �see the review48 and references
therein� have been put forward recently. Many theoretical
papers have been published since the pioneering works32,33

in which different aspects of the LOFF state in superconduct-
ors and conditions necessary for this state were analyzed �see

Refs. 48 and 49 and references therein�. As to the experimen-
tal observation of the inhomogeneous states predicted, the
situation is not as clear. Although some observations in low-
dimensional superconductors and superconductors with
heavy fermions can be interpreted in terms of the LOFF
states, there are no convincing evidences in favor of such
states in ordinary s-wave superconductors.

So, the investigation of nonequilibrium superconductors,
for example, superconductors in tunnel N/S/N systems, can
provide one more possibility to observe the LOFF state ex-
perimentally. Such experiments may be useful for under-
standing the LOFF states and the conditions under which
they can be realized. We mention here another interesting
example of the analogy between a nonequilibrium supercon-
ducting system and equilibrium superconducting system with
an exchange field, namely, the � state may arise not only in
S/F/S junctions50–52 but also in S/N/S junctions with a non-
equilibrium distribution function15–18 �here F denotes a fer-
romagnetic layer�.

V. CONCLUSIONS

In conclusion, using the approximation of an effective
temperature of quasiparticles, we have studied nonequilib-
rium states in a tunnel NSN structure with a low barrier
transparency. It is found that for certain values of parameters,
the CVC of the system may have an S-shaped form. The
uniform state corresponding to the part of the CVC with
negative differential conductance is unstable and therefore a
nonuniform current I�x� and temperature T�x� distribution is
established in the system with a fixed total current. We dis-
cuss the analogy with the nonuniform LOFF states in equi-
librium superconductors and the possibilities of experimental
observation of the nonuniform states in SN structures.
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